基于人工智能和机器学习算法的数据驱动的预测模型的解释性技术使我们能够更好地了解此类系统的运行,并有助于使它们负责。新的透明度方法以惊人的速度开发,使我们能够在这些黑匣子内窥视并解释他们的决策。这些技术中的许多被引入了整体工具,给人以有限的可自定义性的一定程度和端到端算法的印象。然而,这种方法通常由多个可互换的模块组成,这些模块需要调整到手头的问题以产生有意义的解释。本文介绍了动手培训材料的集合 - 幻灯片,视频录制和jupyter笔记本 - 通过构建和评估定制的模块化替代解释器的过程为表格数据提供指导。这些资源涵盖了该技术的三个核心构建基础:可解释的表示组成,数据采样和解释生成。
translated by 谷歌翻译
预测系统,特别是机器学习算法,可以对我们的日常生活做出重要的,有时甚至具有法律约束力的决定。但是,在大多数情况下,这些系统和决策既没有受到监管也不经过认证。鉴于这些算法可能造成的潜在伤害,因此公平,问责制和透明度(FAT)等质量至关重要。为了确保高质量,公平,透明和可靠的预测系统,我们开发了一个名为Fat Forensics的开源Python软件包。它可以检查预测算法的重要公平,问责制和透明度方面,以自动并客观地将其报告给此类系统的工程师和用户。我们的工具箱可以评估预测管道的所有元素:数据(及其功能),模型和预测。根据BSD 3范围的开源许可发布,Fat Forensics供个人和商业用法开放。
translated by 谷歌翻译
约翰·威利(John Wiley)于1994年首次出版了彼得·弗拉奇(Peter Flach系统)。 2007年,版权恢复了作者,此时本书和节目在网上免费提供。印刷版不再通过John Wiley Publishers分发。在2015年,作为一名飞行员,我们使用Swi-Prolog的Swish平台将大部分原始书籍移植到了在线交互式网站中。从那时起,我们启动了简单的逻辑开源组织,致力于维护与Prolog有关人工智能和逻辑编程的一系列免费可用的交互式在线教育资源。随着新的教育技术的出现,我们启发了使用Jupyter Book Platform从头开始重建这本书,并通过一系列定制插件来增强,该插件的集合,除其他外,还可以直接在一个可以直接在一个中执行的交互式SWI-Prolog代码块网页浏览器。此新版本更具模块化,更易于维护,并且可以分为自定义的教学模块,除了具有现代外观,视觉上吸引人,并且与一系列不同屏幕尺寸的(移动)设备兼容。
translated by 谷歌翻译
随着在高风险决策中引入机器学习,确保算法公平已成为越来越重要的问题。为此,已经提出了许多关于公平性的数学定义,并且已经开发了多种优化技术,所有这些都旨在最大化明确的公平概念。但是,公平解决方案取决于训练数据的质量,并且对噪声高度敏感。最近的研究表明,鲁棒性(模型在看不见的数据上表现良好的能力)在解决新问题时应使用的策略类型起着重要作用,因此,测量这些策略的鲁棒性已成为一种基本问题。因此,在这项工作中,我们提出了一个新标准,以衡量各种公平优化策略的鲁棒性 - \ textit {稳健性比率}。我们使用三种最受欢迎​​的公平策略在五个最受欢迎的公平定义方面,在五个基准标记公平数据集上进行了多次广泛的实验。我们的实验从经验上表明,依赖阈值优化的公平方法对所有评估的数据集中的噪声非常敏感,尽管大多数表现优于其他方法。这与其他两种方法相反,这对于低噪声方案而言不太公平,但对于高噪声方案而言更公平。据我们所知,我们是第一个定量评估公平优化策略的鲁棒性的人。这可以作为选择各种数据集的最合适的公平策略的指南。
translated by 谷歌翻译
While data-driven predictive models are a strictly technological construct, they may operate within a social context in which benign engineering choices entail implicit, indirect and unexpected real-life consequences. Fairness of such systems -- pertaining both to individuals and groups -- is one relevant consideration in this space; it surfaces when data capture protected characteristics upon which people may be discriminated. To date, this notion has predominantly been studied for a fixed predictive model, often under different classification thresholds, striving to identify and eradicate undesirable, and possibly unlawful, aspects of its operation. Here, we backtrack on this assumption to propose and explore a novel definition of fairness where individuals can be harmed when one predictor is chosen ad hoc from a group of equally-well performing models, i.e., in view of utility-based model multiplicity. Since a person may be classified differently across models that are otherwise considered equivalent, this individual could argue for a predictor with the most favourable outcome, employing which may have adverse effects on others. We introduce this scenario with a two-dimensional example based on linear classification; then, we investigate its analytical properties in a broader context; and, finally, we present experimental results on data sets that are popular in fairness studies. Our findings suggest that such unfairness can be found in real-life situations and may be difficult to mitigate by technical means alone, as doing so degrades certain metrics of predictive performance.
translated by 谷歌翻译
可解释的人工智能和可解释的机器学习是重要性越来越重要的研究领域。然而,潜在的概念仍然难以捉摸,并且缺乏普遍商定的定义。虽然社会科学最近的灵感已经重新分为人类受助人的需求和期望的工作,但该领域仍然错过了具体的概念化。通过审查人类解释性的哲学和社会基础,我们采取措施来解决这一挑战,然后我们转化为技术领域。特别是,我们仔细审查了算法黑匣子的概念,并通过解释过程确定的理解频谱并扩展了背景知识。这种方法允许我们将可解释性(逻辑)推理定义为在某些背景知识下解释的透明洞察(进入黑匣子)的解释 - 这是一个从事在Admoleis中理解的过程。然后,我们采用这种概念化来重新审视透明度和预测权力之间的争议权差异,以及对安特 - 人穴和后宫后解释者的影响,以及可解释性发挥的公平和问责制。我们还讨论机器学习工作流程的组件,可能需要可解释性,从以人为本的可解释性建立一系列思想,重点介绍声明,对比陈述和解释过程。我们的讨论调整并补充目前的研究,以帮助更好地导航开放问题 - 而不是试图解决任何个人问题 - 从而为实现的地面讨论和解释的人工智能和可解释的机器学习的未来进展奠定了坚实的基础。我们结束了我们的研究结果,重新审视了实现所需的算法透明度水平所需的人以人为本的解释过程。
translated by 谷歌翻译
如今,由机器学习算法驱动的人工智能系统可以对我们的日常生活做出重要的,有时甚至具有法律约束力的决定。但是,在许多情况下,这些系统及其行动既不受到监管也不经过认证。为了应对这种算法可能导致的潜在危害,我们开发了一个开源工具箱,该工具箱可以分析机器学习过程的选定公平性,问责制和透明性方面:数据(及其功能),模型和预测,允许自动和客观地报告他们与相关的利益相关者。在本文中,我们描述了此Python软件包的设计,范围,用法和影响,该软件包于第3条规定BSD开源许可下发布。
translated by 谷歌翻译
我们扩展了神经3D表示,以允许直观和可解释的用户控制超出新颖视图渲染(即相机控制)。我们允许用户注释一个希望在训练图像中只用少量掩模注释来控制的场景的哪个部分。我们的主要思想是将属性视为给定场景编码的神经网络回归的潜在变量。这导致了几次拍摄的学习框架,当未提供注释时,框架会自动发现属性。我们将我们的方法应用于具有不同类型的可控属性的各种场景(例如,人类面上的表达式控制,或在无生命对象的移动中的状态控制)。总体而言,我们据我们所知,我们的知识展示了第一次新颖的视图和新颖的属性从单一视频重新渲染场景。
translated by 谷歌翻译
合理和可控3D人类运动动画的创建是一个长期存在的问题,需要对技术人员艺术家进行手动干预。目前的机器学习方法可以半自动化该过程,然而,它们以显着的方式受到限制:它们只能处理预期运动的单个轨迹,该轨迹排除了对输出的细粒度控制。为了缓解该问题,我们在多个轨迹表示为具有缺失关节的姿势的空间和时间内将未来姿态预测的问题重构为姿势完成。我们表明这种框架可以推广到设计用于未来姿态预测的其他神经网络。曾经在该框架中培训,模型能够从任何数量的轨迹预测序列。我们提出了一种新颖的变形金刚架构,Trajevae,在这个想法上建立了一个,为3D人类动画提供了一个多功能框架。我们展示了Trajevae提供比基于轨迹的参考方法和方法基于过去的姿势。我们还表明,即使仅提供初始姿势,它也可以预测合理的未来姿势。
translated by 谷歌翻译